

13.5. OPTIONAL INPUT-OUTPUT REACTORS

13.5.1. INPUT REACTOR

We suggest that a three-phase inductance, or a DCBUS DC inductance be installed on the supply line to obtain the following benefits:

- limit input current peaks on the input circuit of the inverter and value di/dt due to the input rectifier and to the capacitive load of the capacitors set;

- reducing supply harmonic current;

- increasing power factor, thus reducing line current;

- increasing the duration of line capacitors inside the inverter.

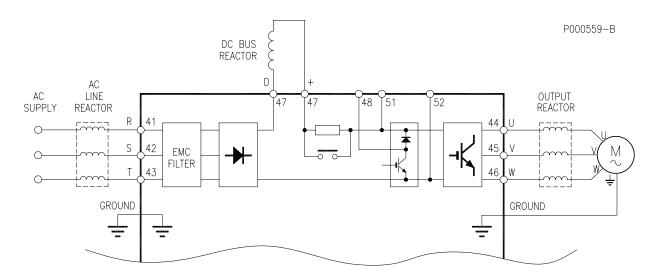


Fig. 56: Wiring diagram for optional inductance

Harmonic current

The shapes of the different waves (current or voltage) may be expressed as the sum of the basic frequency (50 or 60Hz) and its multiples. In balanced, three-phase systems, only odd harmonic current exists, as even current is neutralized by symmetrical considerations.

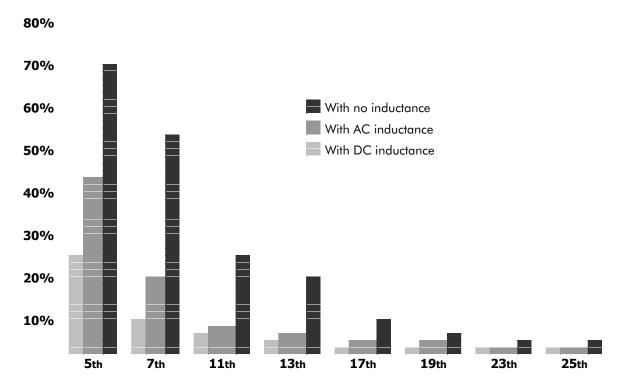
Harmonic current is generated by non linear loads absorbing nonsinusoidal current. Typical sources of this type are bridge rectifiers (power electronics), switched mode power supply and fluorescent lamps. Threephase rectifiers absorb line current with a harmonic content $n=6K\pm1$ with K=1,2,3,... (e.g. 5th,7th,11th,13th,17th,19th, etc.). Harmonic current

amplitude decreases when frequency increases. Harmonic current carries no active power; it is additional current carried by electrical cables. Typical effects are: conductor overload, power factor decrease and measurement systems instability. Voltage generated by current flowing in the transformer reactance may also damage other appliances or interfere with mains-synchronized switching equipment.

Solving the problem

Harmonic current amplitude decreases when frequency increases; as a result, reducing high-amplitude components determines the filtering of low-frequency components. The better way is to increase low-frequency impedance by installing an inductance. Power drive systems with no mains-side inductance generate larger harmonic currents than power drives which do have an inductance. Unlike DC inductance, AC inductance suppresses most harmonic currents and protects the rectifier from supply voltage peaks.

For >500kW drives, a 12-pulse inductance is normally used. This suppresses the lowest harmonic current in the supply line. In a 12-pulse inductance, the lowest harmonics are the 11th and the 13th, followed by the 23rd, the 25th and so on, with their relevant low levels. The supply current shape is very similar to a sinusoid. A different solution to suppress this problem consists in powering the inverter with DC voltage supply using a regenerative inverter: current absorbed by the mains is perfectly sinusoidal, and the regenerative inverter recovers energy to the mains when the motor is regenerating.



NOTE DC-side inductance can be connected only to inverters sizes from \$15 on (to be stated when ordering the equipment).

NOTE When a DC-side inductance is used, it is sometimes possible that no braking resistor or external braking unit can be connected to the inverter.

Fig. 57: Harmonic currents:

CAUTION

The amplitude of harmonic currents and their distortion of the mains voltage is strongly affected by the features of the mains where the equipment is installed. The ratings stated in this manual fit most applications. For special applications, please contact Elettronica Santerno's After-sales service.

For inverter sizes lower than S40 included, always use an input inductance under the following circumstances: mains instability; converters installed for DC motors; loads generating strong voltage variations at startup; power factor correction systems; mains rated power exceeding 500 KVA.

<u>Always activate</u> a line inductance for inverter sizes higher than S50, unless the inverter is powered via a dedicated transformer.

The ratings of optional inductance recommended based on the inverter size are detailed in section 13.5.4.

13.5.2. 12-PHASE CONNECTION

For >500kW drives, a 12-pulse rectifier is normally used. This suppresses the lowest harmonic current in the supply line.

A 12-pulse inductance suppresses 5th and 7th harmonics; harmonics left are the 11th and the 13th, followed by the 23th, the 25th and so on, with their relevant low levels. The supply current shape is very similar to a sinusoid.

In that case, a dedicated transformer is needed, along with a specific interphase inductance for current balance and an additional diode bridge installed outside the inverter (two supply modules are needed for modular inverters)

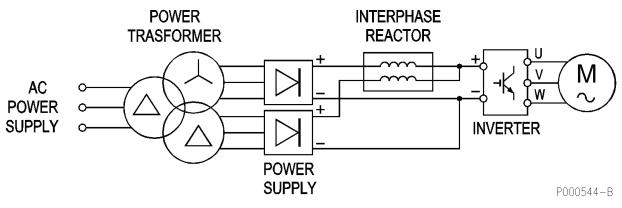
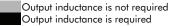


Fig. 58: Layout of a 12-phase connection


13.5.3. OUTPUT REACTOR

Installations requiring a longer distance between the inverter and the motor may cause overcurrent protections to frequently trip. This is due to the wire parasite capacity generating current pulses at the inverter output. This current peak may be limited by an inductance installed on the inverter output. Screened cables even have a higher capacity and may have problems with a shorter length. The recommended output inductance is the same that can be installed at the inverter input (see previous section). The max. distance between the motor and the inverter is given as an example, as parasite capacity is also affected by the type of wiring path and wiring system. For instance, when several inverters and their connected motors are networked, segregating the inverter wires from the motor wires will avoid capacitive couplings between the wiring of each motor. In that case, a reactance should be installed at the output of each inverter.

Motor wiring with unscreened cables

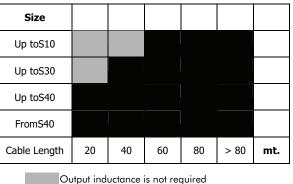
2-4-6-pole MOTORS								
Size								
Up toS10								
Up toS30								
Up toS40								
FromS40								
Cable Length	30	60	90	120	150	> 150	mt.	

8-10 pole MOTORS									
Size									
Up toS10									
Up toS30									
Up toS40									
FromS40									
Cable Length	30	60	90	120	>120	mt.			

Output inductance is required

CAUTION

Inductance stated in the tables above may be used when the inverter output frequency does not exceed 60 Hz. For a higher output frequency a special inductance for the max. allowable operating frequency must be used; please contact Elettronica Santerno S.p.A.


NOTE When using > 10 - pole motors an output inductance is always required.

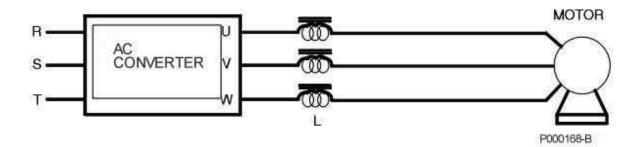
NOTE When using parallel-connected motors, always consider the total length of the cables being used (sum of the cable length of each motor).

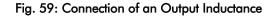
Motor wiring with screened cables

2-4-6-pole MOTORS							
Size							
Up toS10							
Up toS30							
Up toS40							
FromS40							
Cable Length	20	40	80	>80	mt.		

8-10 pole MOTORS

Output inductance is required




Inductance stated in the tables above may be used when the inverter output frequency does not exceed 60 Hz. For a higher output frequency a special inductance for the max. allowable operating frequency must be used; please contact Elettronica Santerno S.p.A.

NOTE When using > 10 - pole motors an output inductance is always required.

NOTE When using parallel-connected motors, always consider the total length of the cables being used (sum of the cable length of each motor).

Always use an output inductance for >= 10-pole motors or parallel-connected motors controlled by a single inverter

13.5.4. REACTORS RATINGS TYPE "L2"

CLASS 2T - 4T

SIZE INVERTER	INVERTER MODEL	INPUT 3-PHASE AC INDUCTANCE MODEL	SINGLE-PHASE DC INDUCTANCE MODEL	OUTPUT INDUCTANCE MODEL		
	0005	IM0126004 2.0 mH – 11 A	Not applicable	IM0126004 2.0 mH – 11 A (AC 3-PHASE)		
S05	0007 0009 0011 0014	IM0126044 1.27 mH – 17 A	Not applicable	IM0126044 1.27 mH – 17 A (AC 3-PHASE)		
\$10	0016 0017 0020	IM0126084 0.7 mH – 32 A	Not applicable	IM0126084 0.7 mH – 32 A (AC 3-PHASE)		
510	0025 0030 0035	IM0126124 0.51 mH – 43 A	Not applicable	IM0126124 0.51 mH – 43 A (AC 3-PHASE)		
S15	0038 0040 0049	IM0126164 0.24 mH – 92 A	Not applicable	IM0126164 0.24 mH – 92 A (AC 3-PHASE)		
S20	0060 0067 0074 0086	IM0126204 0.16 mH – 142 A	IM0140304 0.64 mH – 175 A	IM0126204 0.16 mH – 142 A (AC 3-PHASE)		
\$30	0113 0129 0150 0162	IM0126244 0.09 mH – 252 A	IM0140404 0.36 mH – 305 A	IM0126244 0.09 mH – 252 A (AC 3-PHASE)		
S40	0179 0200 0216 0250	IM0126284 0.061 mH – 362 A IM0126324 0.054 mH – 410 A	IM0140504 0.30 mH – 440 A IM0140554 0.216 mH – 470 A	IM0126284 0.061 mH – 362 A (AC 3-PHASE) IM0126324 0.054 mH – 410 A (AC 3-PHASE))		
S50	0312 0366 0399	IM0126364 0.033 mH – 662 A	IM0140654 0.132 mH – 775 A	IM0126364 0.033 mH – 662 A (AC 3-PHASE)		
\$60	0457 0525 0598	IM0126404 0.023 mH – 945 A	IM0140754 0.092 mH – 980 A	IM0126404 0.023 mH – 945 A (AC 3-PHASE)		
S65	0598 0748 0831	IM0126444 0.018 mH – 1260 A	IM0140854 0.072 mH – 1550 A	IM0126444 0.018 mH – 1260 A (AC 3-PHASE)		

See page below for inductance drawing.

When installing S40 size inverters or smaller, use L2 inductance under the following circumstances: mains instability; thyristor converters, loads generating strong voltage variations at startup; power factor correction systems; mains power exceeding 500 KVA.

When installing \$50 size inverters or bigger, always install line inductance, unless they are powered through a dedicated transformer.

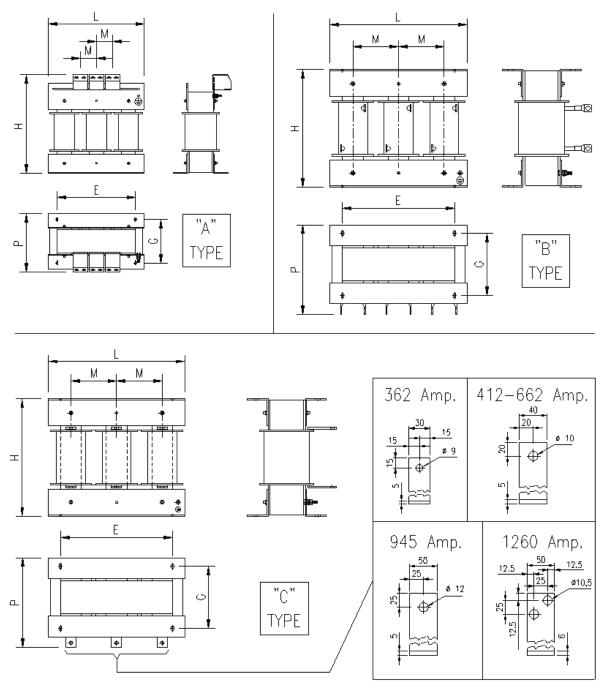
<u>Always activate</u> a line inductance for inverter sizes greater than S50, unless the inverter is powered via a dedicated transformer.

13.5.4.1. CLASS 2T-4T, INTERPHASE INDUCTANCE

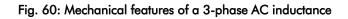
	SIZE	INVERTER MODEL	INTERPHASE INDUCTANCE MODEL					
		0598	1100A	IM0143504				
	\$65	0748	1.400.4	140142/04				
		0831	1400A	IM0143604				

Inductance designed for 12-phase connection. Carefully follow the application diagram.

13.5.5. INDUCTANCE RATINGS


NOTE

13.5.5.1. VOLTAGE CLASS 2T – 4T


	TYPE	INDUCTANCE RATINGS		DIMENSIONS						HOLE	WEIGHT	LEAKAGE	
MODEL		mΗ	А	TYPE	L	Н	D	Μ	Е	G	mm	Kg	W
IM0126004	AC 3-PHASE	2.0	11	Α	120	125	75	25	67	55	5	2.9	29
IM0126044	AC 3-PHASE	1.27	17	Α	120	125	75	25	67	55	5	3	48
IM0126084	AC 3-PHASE	0.70	32	А	170	175	105	40	125	71	7x14	5.5	70
IM0126124	AC 3-PHASE	0.51	43	Α	170	175	105	40	125	71	7x14	6	96
IM0126164	AC 3-PHASE	0.24	92	В	180	160	150	60	150	82	7x14	9.5	183
IM0126204	AC 3-PHASE	0.16	142	В	240	210	175	80	200	107	7x14	17	272
IM0126244	AC 3-PHASE	0.09	252	В	240	210	220	80	200	122	7x14	25	342
IM0126284	AC 3-PHASE	0.061	362	С	300	260	185	100	250	116	9x24	36	407
IM0126324	AC 3-PHASE	0.054	410	С	300	260	205	100	250	116	9x24	39.5	423
IM0126364	AC 3-PHASE	0.033	662	С	300	290	235	100	250	143	9x24	53	500
IM0126404	AC 3-PHASE	0.023	945	С	300	320	240	100	250	143	9x24	67	752
IM0126444	AC 3-PHASE	0.018	1260	С	360	375	280	100	250	200	12	82	1070

ELETTRONICASANTERNO

P000539-B

13.5.6. 3-PHASE AC INDUCTANCE, CLASS 2T AND 4T IN CABINET IP54

SIZE INVERTER	INVERTER MODEL	INDUCTANCE MODEL	TYPE	MECHANICAL DIMENSIONS (see figure below) TYPE	WEIGHT Kg	LEAKAGE W	
	0005	ZZ0112010	AC 3-PHASE	А	6.5	29	
	0007						
S05	0009	ZZ0112020	AC 3-PHASE	А	7	48	
	0011	220112020	AC 3-PHASE	A	/	40	
	0014						
	0016				9.5		
	0017	ZZ0112030	AC 3-PHASE	A		70	
S10	0020						
010	0025				10	<i></i>	
	0030	ZZ0112040	AC 3-PHASE	A	10	96	
	0035						
615	0038	_	AC 3-PHASE	В	14.5		
S15	0040	ZZ0112050				183	
	0049						
	0060				26		
S20	0067	ZZ0112060	AC 3-PHASE	С		272	
	0074	220112000	AC 3-FLIAJE	C	20		
	0113						
	0113	-			32.5		
S30	0127	ZZ0112070	AC 3-PHASE	С		342	
	0162	-					

ELETTRONICASANTERNO

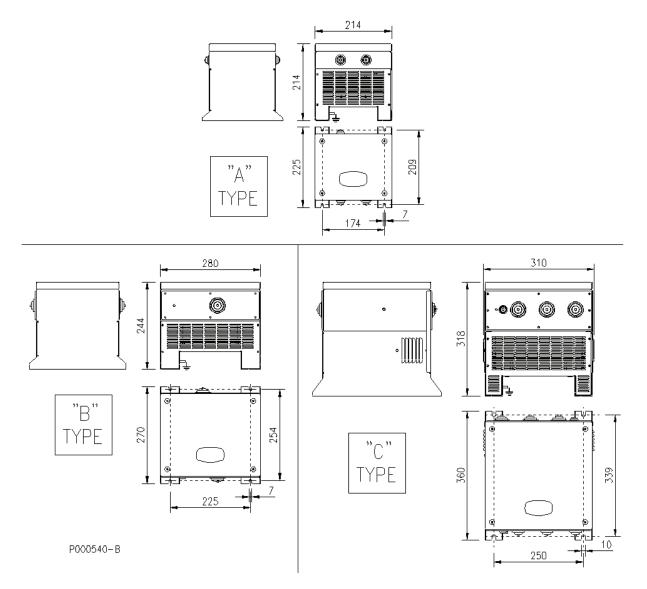


Fig. 61: Mechanical features of a 3-phase AC inductance, Class 2T-4T in cabinet IP54